Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Med Virol ; 96(5): e29621, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38654686

RESUMO

Mpox is a zoonotic disease historically reported in Africa. Since 2003, limited outbreaks have occurred outside Africa. In 2022, the global spread of cases with sustained interhuman transmission and unusual disease features raised public health concerns. We explore the mpox outbreak in Rio de Janeiro (RJ) state, Brazil, in an observational study of mpox-suspected cases from June to December 2022. Data collection relied on a public healthcare notification form. Diagnosis was determined by MPXV-PCR. In 46 confirmed cases, anti-OPXV IgG was determined by ELISA, and seven MPXV genomes were sequenced. A total of 3095 cases were included, 816 (26.3%) with positive MPXV-PCR results. Most positive cases were men in their 30 s and MSM. A total of 285 (34.9%) MPXV-PCR+ patients live with HIV. Eight were coinfected with varicella-zoster virus. Anogenital lesions and adenomegaly were associated with the diagnosis of mpox. Females and individuals under 18 represented 9.4% and 5.4% of all confirmed cases, respectively, showing higher PCR cycle threshold (Ct) values and fewer anogenital lesions compared to adult men. Anti-OPXV IgG was detected in 29/46 (63.0%) patients. All analyzed sequences belonged to clade IIb. In RJ state, mpox presented a diverse clinical picture, represented mainly by mild cases with low complication rates and prominent genital involvement. The incidence in females and children was higher than usually reported. The observation of a bimodal distribution of Ct values, with few positive results, may suggest the need to review the diagnostic criteria in these groups.


Assuntos
Surtos de Doenças , Humanos , Brasil/epidemiologia , Masculino , Feminino , Adulto , Adulto Jovem , Adolescente , Pessoa de Meia-Idade , Animais , Zoonoses/epidemiologia , Zoonoses/virologia , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/isolamento & purificação , Criança , Infecções por HIV/epidemiologia , Infecções por HIV/virologia , Anticorpos Antivirais/sangue , Idoso , Imunoglobulina G/sangue
2.
Virus Evol ; 7(2): veab078, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34642605

RESUMO

Long-term infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents a challenge to virus dispersion and the control of coronavirus disease 2019 (COVID-19) pandemic. The reason why some people have prolonged infection and how the virus persists for so long are still not fully understood. Recent studies suggested that the accumulation of intra-host single nucleotide variants (iSNVs) over the course of the infection might play an important role in persistence as well as emergence of mutations of concern. For this reason, we aimed to investigate the intra-host evolution of SARS-CoV-2 during prolonged infection. Thirty-three patients who remained reverse transcription polymerase chain reaction (RT-PCR) positive in the nasopharynx for on average 18 days from the symptoms onset were included in this study. Whole-genome sequences were obtained for each patient at two different time points. Phylogenetic, populational, and computational analyses of viral sequences were consistent with prolonged infection without evidence of coinfection in our cohort. We observed an elevated within-host genomic diversity at the second time point samples positively correlated with cycle threshold (Ct) values (lower viral load). Direct transmission was also confirmed in a small cluster of healthcare professionals that shared the same workplace by the presence of common iSNVs. A differential accumulation of missense variants between the time points was detected targeting crucial structural and non-structural proteins such as Spike and helicase. Interestingly, longitudinal acquisition of iSNVs in Spike protein coincided in many cases with SARS-CoV-2 reactive and predicted T cell epitopes. We observed a distinguishing pattern of mutations over the course of the infection mainly driven by increasing A→U and decreasing G→A signatures. G→A mutations may be associated with RNA-editing enzyme activities; therefore, the mutational profiles observed in our analysis were suggestive of innate immune mechanisms of the host cell defense. Therefore, we unveiled a dynamic and complex landscape of host and pathogen interaction during prolonged infection of SARS-CoV-2, suggesting that the host's innate immunity shapes the increase of intra-host diversity. Our findings may also shed light on possible mechanisms underlying the emergence and spread of new variants resistant to the host immune response as recently observed in COVID-19 pandemic.

6.
Science ; 369(6508): 1255-1260, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32703910

RESUMO

Brazil currently has one of the fastest-growing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemics in the world. Because of limited available data, assessments of the impact of nonpharmaceutical interventions (NPIs) on this virus spread remain challenging. Using a mobility-driven transmission model, we show that NPIs reduced the reproduction number from >3 to 1 to 1.6 in São Paulo and Rio de Janeiro. Sequencing of 427 new genomes and analysis of a geographically representative genomic dataset identified >100 international virus introductions in Brazil. We estimate that most (76%) of the Brazilian strains fell in three clades that were introduced from Europe between 22 February and 11 March 2020. During the early epidemic phase, we found that SARS-CoV-2 spread mostly locally and within state borders. After this period, despite sharp decreases in air travel, we estimated multiple exportations from large urban centers that coincided with a 25% increase in average traveled distances in national flights. This study sheds new light on the epidemic transmission and evolutionary trajectories of SARS-CoV-2 lineages in Brazil and provides evidence that current interventions remain insufficient to keep virus transmission under control in this country.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Número Básico de Reprodução , Teorema de Bayes , Betacoronavirus/classificação , Brasil/epidemiologia , COVID-19 , Teste para COVID-19 , Cidades/epidemiologia , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Europa (Continente) , Evolução Molecular , Genoma Viral , Humanos , Modelos Genéticos , Modelos Estatísticos , Pandemias/prevenção & controle , Filogenia , Filogeografia , Pneumonia Viral/prevenção & controle , Pneumonia Viral/virologia , SARS-CoV-2 , Análise Espaço-Temporal , Viagem , População Urbana
8.
Parasitol Res ; 115(12): 4691-4699, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27595990

RESUMO

Ticks are blood-feeding arthropods and can harbor several bacteria, including the worldwide zoonotic disease Q-fever agent Coxiella burnetii. Recent studies have reported a distinct group of Coxiella mostly associated with Ixodidae ticks, including the primary endosymbionts of Amblyomma americanum. In the present work, a screening for Coxiella infection was performed by 16S ribosomal DNA (rDNA) gene analyses in 293 tick samples of 15 different species sampled worldwide, including Brazil, Colombia, Kenya, and China. Different Coxiella phylotypes were identified, and these putative symbiotic bacteria were detected in ten different Amblyomma tick species. Approximately 61 % of Rhipicephalus sanguineus and ∼37 % of Rhipicephalus microplus DNA samples were positive for Coxiella. Sequence analysis and phylogenetic reconstruction grouped all the detected Coxiella with Coxiella-like symbionts from different Ixodidae ticks. This well-defined clade clearly excludes known phylotypes of C. burnetii pathogens and other Coxiella spp. detected in different environmental samples and other invertebrate hosts.


Assuntos
Coxiella/isolamento & purificação , Ixodidae/microbiologia , Simbiose , Animais , Brasil , China , Coxiella/classificação , DNA Ribossômico/genética , Quênia , Tipagem Molecular , Filogenia
10.
PLoS One ; 10(8): e0134462, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26244561

RESUMO

The Anopheles genus is a member of the Culicidae family and consists of approximately 460 recognized species. The genus is composed of 7 subgenera with diverse geographical distributions. Despite its huge medical importance, a consensus has not been reached on the phylogenetic relationships among Anopheles subgenera. We assembled a comprehensive dataset comprising the COI, COII and 5.8S rRNA genes and used maximum likelihood and Bayesian inference to estimate the phylogeny and divergence times of six out of the seven Anopheles subgenera. Our analysis reveals a monophyletic group composed of the three exclusively Neotropical subgenera, Stethomyia, Kerteszia and Nyssorhynchus, which began to diversify in the Late Cretaceous, at approximately 90 Ma. The inferred age of the last common ancestor of the Anopheles genus was ca. 110 Ma. The monophyly of all Anopheles subgenera was supported, although we failed to recover a significant level of statistical support for the monophyly of the Anopheles genus. The ages of the last common ancestors of the Neotropical clade and the Anopheles and Cellia subgenera were inferred to be at the Late Cretaceous (ca. 90 Ma). Our analysis failed to statistically support the monophyly of the Anopheles genus because of an unresolved polytomy between Bironella and A. squamifemur.


Assuntos
Anopheles/genética , Evolução Molecular , Variação Genética , Filogenia , Animais , Anopheles/classificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Proteínas de Insetos/genética , Proteínas Mitocondriais/genética , Subunidades Proteicas/genética , RNA Ribossômico 5,8S/genética , Especificidade da Espécie , Fatores de Tempo
11.
Viruses ; 6(11): 4465-78, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25415197

RESUMO

Lyssavirus is a diverse genus of viruses that infect a variety of mammalian hosts, typically causing encephalitis. The evolution of this lineage, particularly the rabies virus, has been a focus of research because of the extensive occurrence of cross-species transmission, and the distinctive geographical patterns present throughout the diversification of these viruses. Although numerous studies have examined pattern-related questions concerning Lyssavirus evolution, analyses of the evolutionary processes acting on Lyssavirus diversification are scarce. To clarify the relevance of positive natural selection in Lyssavirus diversification, we conducted a comprehensive scan for episodic diversifying selection across all lineages and codon sites of the five coding regions in lyssavirus genomes. Although the genomes of these viruses are generally conserved, the glycoprotein (G), RNA-dependent RNA polymerase (L) and polymerase (P) genes were frequently targets of adaptive evolution during the diversification of the genus. Adaptive evolution is particularly manifest in the glycoprotein gene, which was inferred to have experienced the highest density of positively selected codon sites along branches. Substitutions in the L gene were found to be associated with the early diversification of phylogroups. A comparison between the number of positively selected sites inferred along the branches of RABV population branches and Lyssavirus intespecies branches suggested that the occurrence of positive selection was similar on the five coding regions of the genome in both groups.


Assuntos
Evolução Molecular , Variação Genética , Lyssavirus/genética , Seleção Genética , Adaptação Biológica , Análise por Conglomerados , Biologia Computacional , Filogenia , Análise de Sequência de DNA , Proteínas Virais/genética
12.
Microb Ecol ; 66(2): 471-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23797292

RESUMO

Emerging infectious diseases usually arise from wild animal populations. In the present work, we performed a screening for bacterial infection in natural populations of New World primates. The blood cell bulk DNAs from 181 individuals of four Platyrrhini genera were PCR screened for eubacterial 16S rRNA genes. Bacteria were detected and identified in 13 distinct individuals of Alouatta belzebul, Alouatta caraya, and Cebus apella monkeys from geographically distant regions in the states of Mato Grosso and Pará, Brazil. Sequence analyses showed that these Platyrrhini bacteria are closely related not only to human pathogens Pseudomonas spp. but also to Pseudomonas simiae and sheep-Acari infecting Pseudomonas spp. The identified Pseudomonas possibly represents a group of bacteria circulating in natural monkey populations.


Assuntos
Bactérias/isolamento & purificação , Infecções Bacterianas/veterinária , Haplorrinos/microbiologia , Doenças dos Primatas/microbiologia , Animais , Animais Selvagens/microbiologia , Bactérias/classificação , Bactérias/genética , Infecções Bacterianas/microbiologia , Haplorrinos/classificação , Humanos , Dados de Sequência Molecular , Filogenia
13.
BMC Res Notes ; 6: 160, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23607317

RESUMO

BACKGROUND: The hystricognath rodents of the New World, the Caviomorpha, are a diverse lineage with a long evolutionary history, and their representation in South American fossil record begins with their occurrence in Eocene deposits from Peru. Debates regarding the origin and diversification of this group represent longstanding issues in mammalian evolution because early hystricognaths, as well as Platyrrhini primates, appeared when South American was an isolated landmass, which raised the possibility of a synchronous arrival of these mammalian groups. Thus, an immediate biogeographic problem is posed by the study of caviomorph origins. This problem has motivated the analysis of hystricognath evolution with molecular dating techniques that relied essentially on nuclear data. However, questions remain about the phylogeny and chronology of the major caviomorph lineages. To enhance the understanding of the evolution of the Hystricognathi in the New World, we sequenced new mitochondrial genomes of caviomorphs and performed a combined analysis with nuclear genes. RESULTS: Our analysis supports the existence of two major caviomorph lineages: the (Chinchilloidea + Octodontoidea) and the (Cavioidea + Erethizontoidea), which diverged in the late Eocene. The Caviomorpha/phiomorph divergence also occurred at approximately 43 Ma. We inferred that all family-level divergences of New World hystricognaths occurred in the early Miocene. CONCLUSION: The molecular estimates presented in this study, inferred from the combined analysis of mitochondrial genomes and nuclear data, are in complete agreement with the recently proposed paleontological scenario of Caviomorpha evolution. A comparison with recent studies on New World primate diversification indicate that although the hypothesis that both lineages arrived synchronously in the Neotropics cannot be discarded, the times elapsed since the most recent common ancestor of the extant representatives of both groups are different.


Assuntos
Filogenia , Roedores/classificação , Animais , Evolução Biológica , América do Sul
14.
Evol Bioinform Online ; 8: 207-18, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22654486

RESUMO

Data partitioning has long been regarded as an important parameter for phylogenetic inference. The division of heterogeneous multigene data sets into partitions with similar substitution patterns is known to increase the performance of probabilistic phylogenetic methods. However, the effect of the partitioning scheme on divergence time estimates has generally been ignored. To investigate the impact of data partitioning on the estimation of divergence times, we have constructed two genomic data sets. The first one with 15 nuclear genes comprising 50,928 bp were selected from the OrthoMam database; the second set was composed of complete mitochondrial genomes. We studied two partitioning schemes: concatenated supermatrices and partitioned gene analysis. We have also measured the impact of taxonomic sampling on the estimates. After drawing divergence time inferences using the uncorrelated relaxed clock in BEAST, we have compared the age estimates between the partitioning schemes. Our results show that, in general, both schemes resulted in similar chronological estimates, however the concatenated data sets were more efficient than the partitioned ones in attaining suitable effective sample sizes.

15.
Infect Genet Evol ; 12(2): 309-14, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22226705

RESUMO

Evolutionary studies on dengue virus have frequently focused on intra-serotype diversity or on specific epidemics. In this study, we compiled a comprehensive data set of the envelope gene of dengue virus serotypes and conducted an extensive comparative study of evolutionary molecular epidemiology. We found that substitution rates are homogeneous among dengue serotypes, although their population dynamics have differed over the past few years as inferred by Bayesian coalescent methods. On a global scale, DENV-2 is the serotype with the highest effective population size. The genealogies also showed geographical structure within the serotypes. Finally, we also explored the causes of dengue virus serotype diversification by investigating the plausibility that it was driven by adaptive changes. Our results suggest that the envelope gene is under significant purifying selection and the hypothesis that dengue virus serotype diversification was the result of stochastic events cannot be ruled out.


Assuntos
Vírus da Dengue/classificação , Vírus da Dengue/genética , Dengue/epidemiologia , Evolução Molecular , Variação Genética , Genética Populacional , Humanos , Filogenia , Filogeografia , Seleção Genética , Sorotipagem , Proteínas do Envelope Viral/genética
16.
Genet Mol Res ; 4(4): 668-74, 2005 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-16475111

RESUMO

Penaeid shrimps are an important resource in crustacean fisheries, representing more than the half of the gross production of shrimp worldwide. In the present study, we used a sample of wide-ranging diversity (41 shrimp species) and two mitochondrial markers (758 bp) to clarify the evolutionary relationships among Penaeidae genera. Three different methodologies of tree reconstruction were employed in the study: maximum likelihood, neighbor joining and Bayesian analysis. Our results suggest that the old Penaeus genus is monophyletic and that the inclusion of the Solenocera genus within the Penaeidae family remains uncertain. With respect to Metapenaeopsis monophyly, species of this genus appeared clustered, but with a nonsignificant bootstrap value. These results elucidate some features of the unclear evolution of Penaeidae and may contribute to the taxonomic characterization of this family.


Assuntos
Evolução Molecular , Variação Genética/genética , Mitocôndrias/genética , Penaeidae/genética , Filogenia , Algoritmos , Animais , Teorema de Bayes , Complexo I de Transporte de Elétrons/genética , Marcadores Genéticos , Funções Verossimilhança , Penaeidae/classificação , RNA Ribossômico 16S/genética , Alinhamento de Sequência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...